M.Sc. Semester-III Core Course - 7 (CC-7) Application of Spectroscopy

III. Nuclear Magnetic Resonance Spectroscopy

L4: Spin-Spin Coupling, The n+1 Rule and Pascal's Triangle

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Theory of NMR

 The small energy difference between the two alignments of magnetic spin corresponds to the energy of radio waves according to Einstein's equation E=hv.

- Application of just the right radiofrequency (v) causes the nucleus to "flip" to the higher energy spin state
- Not all nuclei require the same amount of energy for the quantized spin 'flip' to take place.
- The exact amount of energy required depends on the chemical identity (H, C, or other element) and the chemical environment of the particular nucleus.

Spin-spin splitting (Coupling)

- Proton NMR spectra are not typically as simple as CMR (¹³C NMR) spectra, which usually give a single peak for each different carbon atom in the structure.
- Proton NMR spectra are often much more complex.
- Because of its nuclear spin, each proton exerts a slight effect on the localized magnetic field experienced by its neighboring proton(s).
- The spin state (↑ or ↓) of any one proton is independent of any other proton.
- The energies of protons of different spin states are so nearly equal that there is close to a 50:50 chance for each proton to be up (or down).

Spin-spin splitting (Coupling)

- The spin states of the neighboring protons (those on the adjacent carbon) exert a small influence on the magnetic field, and therefore on the chemical shift of a given proton.
- The result is that proton signals in the NMR spectrum are typically <u>split</u> into <u>multiplets</u>. This phenomenon is called <u>coupling</u>; the consequence is signal <u>splitting</u>.
- The type of multiplet (doublet, triplet, quartet, etc.) depends on the number of protons on the next carbon.

The n+1 rule

 The <u>multiplicity</u> of a proton or a group of protons is given by the <u>n+1 rule</u>, where n = the number of protons on the <u>adjacent (adjoining</u>) carbon atom (or atoms)

<u>n</u>	<u>n+1</u>	<u>multiplet name (abbrev)</u>		intensity pattern
0	1	singlet	(S)	1
1	2	doublet	(d)	1:1
2	3	triplet	(t)	1:2:1
3	4	quartet	(q)	1:3:3:1
4	5	quintet/pentet	-	1:4:6:4:1
5	6	sextet	-	1:5:10:10:5:1
6	7	septet/heptet	-	1:6:15:20:15:6:1
				Pascal's Triangle

Dr. |

Spin-spin Coupling in Chloroethane

- Consider the ethyl group in chloroethane CH₃CH₂CI.
- The methyl protons experience a magnetic field that is somewhat influenced by the chlorine on the adjacent carbon, but is also affected slightly by the nuclear spin states of the <u>adjacent</u> methylene (CH₂) protons.
- The two CH₂ protons can have the following possible combination of spins:

two spin up (1 way) one up and one down (2) two spin down (1)

- $\uparrow \uparrow \uparrow \downarrow \downarrow$ 1 : 2 : 1
- This results in a 1:2:1 triplet for the methyl group

Spin-spin Coupling in Chloroethane

- The magnetic field experienced by the CH₂ protons in chloroethane (CH₃CH₂CI) is mainly influenced by the electronegative chlorine.
- However, it is slightly perturbed by the spin states of the three methyl (CH₃) protons on the adjoining carbon
- They have four possible combinations of spins:

Three spin up (1 way) Two up and one down (3) Two down and one up (3) Three spin down (1)

 $\begin{array}{c} \downarrow\uparrow\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\\ \uparrow\downarrow\uparrow\downarrow\downarrow\uparrow\downarrow\\ \uparrow\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow\\ 1:3:3:3:1 \end{array}$

• As a result, the <u>CH₂ group</u> appears as a **1:3:3:1 quartet**.

PMR Spectrum of Chloroethane

- Putting the multiplets together gives the predicted spectrum.
- The pattern of a **downfield quartet** and an **upfield triplet** is typical of -CH₂ the presence of an <u>ethyl group</u> in the molecular structure.
- Note that the triplet is larger than the quartet. That is because there are 3 protons giving rise to the triplet, and only 2 protons giving rise to the quartet.

CH₃CH₂Cl

• The integrated signal areas are in a 3:2 ratio.

Rajeev Ranjan

<u>р</u>.

Thank You

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi